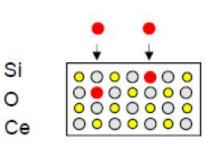
Tohoku Univ. Technology

Quantum bit / Quantum sensor material using SiO₂

Can be produced at low cost. Proven write operation.

Overview

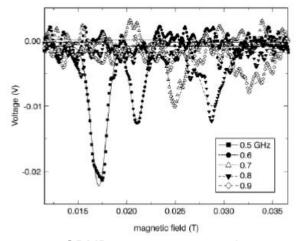
Nitrogen-vacancy center (NV center) in diamond satisfies the characteristics required for qubits, and expected to be applied to quantum computers and quantum sensors. Other candidate materials are divacancy centers (VV centers) in SiC and Ce-implanted Yttrium Aluminum Garnet (YAG). However, the problem with all of these materials is the high cost of raw materials, and it is expected to be difficult to scale up.


The present invention demonstrates that light emitting centers (Ce^{3+}) can be formed in Ce implanted SiO_2 or $MgAl_2O_4$ substrates. Optically Detected Magnetic Resonance (ODMR) measurements demonstrate the feasibility of write operations in quantum dots. It is possible to realize a quantum bit / quantum sensor at low cost.

Product Application

- Quantum sensors such as ODMR
- Quantum bits for quantum computers

IP Data


IP No.	: WO 20252/047531 A1
Inventor	: KANAI Shun, ABE Yuichiro, KAWAHARA Manato
	FUKAMI Shunsuke, OHNO Hideo, ISHIHARA Jun
	KODA Makoto, TAKANO Koki
Admin No.	: T24-052

α-quartz

Schematic diagram of Ce ion doping into SiO_2 substrate

Write operations in quantum dots

ODMR measurement results

Related Works

 \circ

[1] Manato Kawahara et al, Applied Physics Express **17**, 072004 (2024)

https://doi.org/10.35848/1882-0786/ad59f4

Contact

Tohoku Techno Arch Co., Ltd.

Please visit <u>CONTACT</u> here