Tohoku Univ. Technology

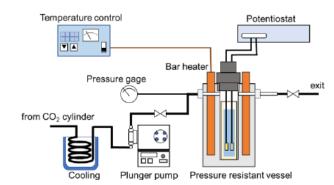
Electrochemical CO₂ reduction method

High-efficiency CO₂ electroreduction under hydrothermal conditions

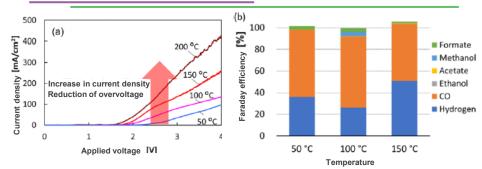
Overview

The electrochemical CO_2 reduction reaction (CO2RR) process, in which CO_2 is electrochemically converted, is attracting attention as a promising CO_2 reduction method. However, the conventional method has a problem of low energy efficiency. The inventor has found that it is possible to improve the efficiency of the CO2RR process by utilizing a high-temperature high-pressure water environment called a hydrothermal conditions. When electrolysis is carried out in high-temperature high-pressure water at 150°C and 100 atm pressurized with CO_2 , the high diffusion coefficient and solubility of CO_2 in the water facilitating efficient CO_2 supply to the electrode, and the energy efficiency is significantly enhanced.

Additional assessment has shown that it is possible to synthesize "carbon-negative" basic chemical product (methanol), in which the amount of CO_2 absorbed exceeds the amount of CO_2 emitted, by leveraging low-temperature waste heat from industrial sources and renewable electricity.


Product Application

□ High-efficiency CO₂ electroreduction using flue gas and low-temperature waste heat from factories, power plants, and waste-to-energy plants


IP Data

IP No. : PCT/JP2025/009449 Inventor : TOMAI Takaaki

Admin No. : T23-091

Effect of hydrothermal conditions on current density and products ¹

- (a) Current density as a function of the applied voltage at various temperatures at 10MPa.
- (b) Faraday efficiency (FE) for each compound produced by the cathodic reduction at \approx 100 mA cm⁻² under hydrothermal conditions (50–150 °C at 10 MPa).

Increasing the temperature enhances current density and enables the reaction to occur at a lower applied voltage, leading to improved energy efficiency.

Related Works

[1] Advanced Sustainable Systems, 2024, 2400489 https://doi.org/10.1002/adsu.202400489

Contact

Tohoku Techno Arch Co., Ltd.

Please visit **CONTACT** here