Tohoku Univ. Technology

Mechanism of action

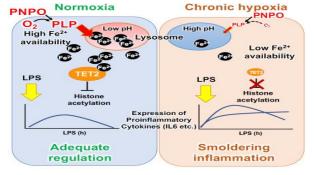
An anti-inflammatory drug for patients suffering from chronic hypoxia

Active Vitamin B6 attenuates inflammatory response

Overview

The decline in the circulatory and respiratory functions associated with aging is known to result in a reduction in oxygen concentration in peripheral tissues. The present inventors have discovered that chronic hypoxia exacerbates inflammatory responses and that the biological responses in a state of chronic hypoxia are independent of the hypoxia-inducible factor (HIF) pathway.

In the lungs of mice exposed to prolonged hypoxia (3 days at 7% oxygen concentration), a decrease in pyridoxal 5'-phosphate (PLP) was observed, and the induction of inflammation resulted in increased production of the proinflammatory cytokine IL-6, which was abrogated by PLP supplementation.


These results highlight the importance of oxygen-requiring bioactivation process of vitamin B6 and will be applied to prevent and/or alleviate of inflammation in patients suffering from chronic hypoxia.

Product Application

- Pharmaceuticals, particularly for the inflammation related to asymptomatic hypoxemia induced by COVID-19
- Supplements

IP Data

IP No.:PCT/JP2023/037930Inventor:Hiroki Sekine, Hozumi MotohashiAdmin No.:T22-162

Chronic hypoxia exacerbates inflammatory reactions due to a decrease in the production of active vitamin B6.

Inflammatory response in prolonged hypoxia

Vitamin B6 supplementation suppressed the increase in the inflammatory cytokine IL-6.

Related Works

[1] Sekine H et al. PNPO-PLP Axis Senses Prolonged Hypoxia by Regulating Lysosomal Activity doi: <u>https://doi.org/10.1101/2022.10.28.514185</u>

Contact

