

High-Efficiency MgSn TE Material zT > 0.8 with MgSn Thermoelectric Material

Overview

Thermoelectric (TE) materials, which have the ability to convert heat into electricity, play a significant role in the utilization and management of thermal energy. Mg2Sn is a potential thermoelectric (TE) material that exhibits environmental compatibility since it is not-toxic and .not contains rare materials. However, as existing Mg2Sn materials have low electric conductivity and high thermal conductivity, it results in low *z*T value.

This invention is related to Mg2Sn material contains Sb and B as doping materials, and Mg vacancies with high Power Factor and low thermal conductivity, which contribute to improve zT value. zT > 0.8 are achieved by our materials mentioned above.

Product Application

- **D** Thermoelectric Material
- □ Thermoelectric Module
- Thermal Co-Generaetion

IP Data

IP No.:JP Application No. 2021-023528Inventor:Wataru SAITO, Kei HAYASHI, Yuzuru MIYAZAKIAdmin No.:T20-641

Features · Outstandings

echnoarch

ohoku

Single Crystal	(μV/K)	σ (S/cm)	кс (W/Km)	PF (10 ⁻³ ×W/K ² m)	zT
Mg ₂ Sn	-49.1	403	4.69	0.0972	0.0135
$Mg_2(Sn_{0.99}Sb_{0.01})$	-171	1680	4.43	4.91	0.72
(Mg _{1, 995} B _{0, 005}) (Sn _{0, 99} Sb _{0, 01})	-173	1250	2. 98	3. 74	0. 81

Related Works

[1] W.Saito et al. Enhancing the Thermoelectric Performance of Mg2Sn Single Crystals via Point Defect Engineering and Sb Doping, ACS Appl. Mater. Interfaces 2020, 12, 52, 57888–57897

Contact

