

Rhizobia that reduce soil N₂O

Possible to reduce greenhouse gas in agricultural land! NEDO Moon shot R&D project

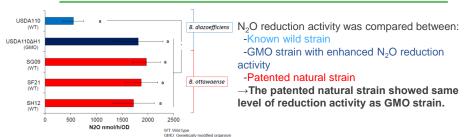
Overview

Dinitrogen monoxide (N_2O) is an intense greenhouse gas having about 300 times greater effect than carbon dioxide (CO_2). It is said that 59% of anthropogenic emission comes from agriculture.

In particular, chemical fertilizer overuse in large scale agriculture is a cause of N_2O emission from the soil since more chemical fertilizers are applied than the absorption by plant. A certain rhizobia (*Bradyrhizobium diazoefficiens* USDA110) is known to reduce N_2O to harmless nitrogen (N2), but the bacteria are not effective enough to solve the problem. In the context that non GMO rhizobia usage with high N_2O reductase activity is expected from the viewpoint of global warming control and soil ecosystem, this invention proposes a natural rhizobia (*Bradyrhizobium ottawaense* SG09, etc.) with stronger N_2O reductase activity than the conventional rhizobia, and its application.

Product Application

- Microbial material
- Fertilizer
- Growing soil


IP Data

IP No.	: WO2022/149590	
Inventor	: MINAMISAWA Kiwamu, HARA Sawa, ITAKURA	
	Manabu, ARTHUR FERNANDES SIQUEIRA	
Admin No.	: T20-2323	

Reference https://w 3.tohoku.ac.jp/moonshot/project/minamizawa/

Features • Outstanding

No significant difference in activity by Tukey test

T-test shows that B.ottawaense and Nos enhanced strain are significantly more active than USDA110 (n=3-5)

Comparison of soybean growth

Left: Inoculated with the invented strain Right: No inoculation

Related Works

[1] Itakura et al. 2013. Nature Climate Change 3: 208-212. DOI: 10.1038/NCLIMATE1734

[2] Sánchez et al. 2017. Environ Microbiol Rep. 2017 9: 389-396. doi: 10.1111/1758-2229.12543.

[3] Wasai-Hara et al. 2020. Microbes Environ. 35: ME19102. doi:

10.1264/jsme2.ME19102.

Contact

Tohoku Techno Arch Co., Ltd.

Please visit <u>CONTACT</u> here