

Q factor trimming for Oscillator

adjust the Q factor of multiple orthogonal modes

Overview

Although the Q factors of the 2D oscillator used in gyroscope must be matched in the x and y axial directions, they may differ slightly due to manufacturing error, etc. Thus, Q factor in each x and y axial direction needs to be matched independently.

In a oscillator, vibration generates heat flow which affects the Q factor (thermoelastic loss). Therefore, it is possible to adjust the Q factor by adding a heat flow path in the structure or by blocking the heat flow.

The 2D oscillator of this invention has a pre-fabricated machinable part to control the heat flow without changing significantly the stiffness, in addition to its basic structure. The Q factors in the 1st and 2nd modes, which are orthogonal to each other, can be controlled independently by cutting this machinable part appropriately.

Product Application

Oscillator used in gyrosensor

IP Data

IP No. : JP2019-195011 Inventor : TSUKAMOTO Takashiro, TANAKA Shuji Admin No. : T19-369

Example of gyroscope configuration

Adjust the Q factor by machining the machinable part

Related Works

[1] A. Hamza, T. Tsukamoto and S. Tanaka, "Quality Factor Trimming Method Using Thermoelastic Dissipation for Ring-Shape MEMS Resonator," in Proc. 2020 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), 2020, pp. 1-4.

Contact

